Predicting Antigenic Variants of Influenza A/H3N2 Viruses

نویسندگان

  • Min-Shi Lee
  • Jack Si-En Chen
چکیده

Current inactivated influenza vaccines provide protection when vaccine antigens and circulating viruses share a high degree of similarity in hemagglutinin protein. Five antigenic sites in the hemagglutinin protein have been proposed, and 131 amino acid positions have been identified in the five antigenic sites. In addition, 20, 18, and 32 amino acid positions in the hemagglutinin protein have been identified as mouse monoclonal antibody-binding sites, positively selected codons, and substantially diverse codons, respectively. We investigated these amino acid positions for predicting antigenic variants of influenza A/H3N2 viruses in ferrets. Results indicate that the model based on the number of amino acid changes in the five antigenic sites is best for predicting antigenic variants (agreement = 83%). The methods described in this study could be applied to predict vaccine-induced cross-reactive antibody responses in humans, which may further improve the selection of vaccine strains.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Seasonal Outbreak of Influenza A virus Infection in Pediatric Age Groups During 2004-2005 in South of Iran

Background: The pandemic and regional influenza outbreaks resulting from antigenic variation of influenza viruses have been the subject of numerous studies which are crucial to the preparation of the vaccine. Frequent global winter outbreaks of influenza viruses require a constant surveillance of emerging influenza variants in order to develop efficient influenza vaccine. Methods: This study wa...

متن کامل

Bioinformatics models for predicting antigenic variants of influenza A/H3N2 virus

MOTIVATION Continual and accumulated mutations in hemagglutinin (HA) protein of influenza A virus generate novel antigenic strains that cause annual epidemics. RESULTS We propose a model by incorporating scoring and regression methods to predict antigenic variants. Based on collected sequences of influenza A/H3N2 viruses isolated between 1971 and 2002, our model can be used to accurately pred...

متن کامل

A universal computational model for predicting antigenic variants of influenza A virus based on conserved antigenic structures

Rapid determination of the antigenicity of influenza A virus could help identify the antigenic variants in time. Currently, there is a lack of computational models for predicting antigenic variants of some common hemagglutinin (HA) subtypes of influenza A viruses. By means of sequence analysis, we demonstrate here that multiple HA subtypes of influenza A virus undergo similar mutation patterns ...

متن کامل

Using Sequence Data To Infer the Antigenicity of Influenza Virus

UNLABELLED The efficacy of current influenza vaccines requires a close antigenic match between circulating and vaccine strains. As such, timely identification of emerging influenza virus antigenic variants is central to the success of influenza vaccination programs. Empirical methods to determine influenza virus antigenic properties are time-consuming and mid-throughput and require live viruses...

متن کامل

Using multiple linear regression and physicochemical changes of amino acid mutations to predict antigenic variants of influenza A/H3N2 viruses.

Among human influenza viruses, strain A/H3N2 accounts for over a quarter of a million deaths annually. Antigenic variants of these viruses often render current vaccinations ineffective and lead to repeated infections. In this study, a computational model was developed to predict antigenic variants of the A/H3N2 strain. First, 18 critical antigenic amino acids in the hemagglutinin (HA) protein w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2004